
Dataflow tabular charts

Yves Rütschlé

April 1, 2020

Abstract

Currently, architecture diagrams focus on network topology. This type
of view does not allow a clear vision of how protocols stack up, which is
important when assessing the security of a system. We propose a new
type of data flow diagram which emphasizes the intertwining of multi-
ple layers of protocols through a series of systems or security functions.
These diagrams complement topological diagrams to provide a better un-
derstanding of network communications.

1 Limits of architecture diagrams

It is common for architecture guidelines to mention the concept of boundary
protection. NIST Special Publication 800-53 defines1 the term as monitoring and
controling “communications at the external boundary of the system and at key
internal boundaries within the system; implementing subnetworks for publicly
accessible system components that are separated from internal organizational
networks; and connecting to external networks or information systems only
through managed interfaces consisting of boundary protection devices arranged
in accordance with an organizational security architecture.”

A boundary protection is more than just firewalling: the “control” of com-
munications across boundaries can be understood as application-level filtering,
or even ideally as a full protocol break.

In the definition of an architecture that relies on boundary protection, se-
curity functions are rarely set up to create one neat barrier. Instead, they are
usually spread over various functions, each of which acts at a different level of
the network stack.

This is especially important to realize when working with architecture block
diagrams: these give a view “from above” of the system, where components are
laid out on the paper and the protocol stacks do not appear. This type of rep-
resentation does not readily show which processes are performed on dataflows.
For example, figure 1 shows a standard e-mail setup: a front firewall limits in-
coming dataflows to those going to the receiving SMTP server within a DMZ;
an IMAP server, still in the DMZ, accesses the files saved by the SMTP server.
A back firewall only allows IMAP connections from clients inside the network.

1NIST.SP.800-53r4, Appendix F, SC-7.

1

Mail DMZ

Front firewallBack firewall

User Sender
IMAP
server

SMTP
server

File server

Figure 1: Standard e-mail DMZ

The front firewall only allows traffic to the SMTP server. In case of a vul-
nerability exploitation in the SMTP server, the attacker cannot move laterally
inside the network. The architect thinks they set up two security barriers and
goes home with the sense of a job well done.

This is, however, missing that the content of the e-mail is transmitted di-
rectly to the user e-mail client. An attacker could conceivably use crafted head-
ers to exploit a vulnerability in the e-mail client, and exploit assets that are
inside the protected network, beyond the back firewall.

The paranoid architect that would want to protect against that would typi-
cally use a full protocol break, for example with a set up such as that in figure 2:
now the user client also runs in the DMZ, along with a remote desktop server
such as VNC or RDP, and the user connects with a remote desktop client. Un-
trusted data only indirectly enters the protected network. Exploitation now
requires a vulnerability in the SMTP or IMAP server, to bounce and exploit a
further vulnerability in the remote desktop server.

However, the block diagram vision “from above,” both in figure 1 and 2,
obscures these points, and in fact both figures look extremely similar to the
hasty reader.

2 Cutting through protocol layers

Thus we propose the use of “dataflow tabular charts,” which show the network
protocol stack across the various services that the dataflow may cross. For
example figure 3 shows the chart for the first architecture.

Each gray box in the background represents a server, a domain, or some
hardware entity. Each vertical arrow represents an actual function or software
service and goes through the stack up to where that function processes. Then

2

Desktop
server

SMTP
server

File server

Email client

Mail DMZ

Front firewallBack firewall

User Sender

Figure 2: E-mail in DMZ

Human Reader laptop Firewall Router Mail server DMZ Front Ŀrewall Sender PC

Human content

RFC2822 message

IMAPS

TCP

IP

Ethernet

TCP

IP

Ethernet

local Ŀle SMTP

TCP

IP

Ethernet

TCP

IP

H
um

an

Em
ai

l c
lie

nt

Ro
ut

in
g

IM
A

P
Se

rv
er

SM
TP

 S
er

ve
r

Ro
ut

in
g

Em
ai

l c
lie

nt

Figure 3: Dataflow tabular chart for E-mail in DMZ

the reader simply needs to look at what is connected to the “Sender PC” box
to see how far each layer can be used for attack: the original TCP connection
ends at the first firewall, but malformed SMTP can be used to attack the SMTP
server; the IMAPS server only serves files and does not read them, so it cannot
be directly attacked; the actual e-mail message reaches right through the DMZ
to the final client.

In contrast, figure 4, which shows the protocol stacks for the second architec-
ture, makes it clear that only the “meaning” of the email (the human content)
reaches the client: everything else has been processed and re-written in the
DMZ.

These dataflow charts are meant to complete, and not replace, traditional
architectural views: while they show the processing along the network stack,
they obscure the potential for lateral movement of an attacker compromising a

3

Human Reader laptop Firewall Router Mail server DMZ Front Ŀrewall Sender PC

Human content

VNC

TCP

IP

Ethernet

TCP

IP

Ethernet

RFC2822 message

IMAPS

TCP

IP

Ethernet

local Ŀle SMTP

TCP

IP

Ethernet

TCP

IP

H
um

an

V
N

C
 c

lie
nt

Ro
ut

in
g

Em
ai

l c
lie

nt

IM
A

P
Se

rv
er

SM
TP

 S
er

ve
r

Ro
ut

in
g

Em
ai

l c
lie

nt

Figure 4: Dataflow tabular chart for E-mail client in DMZ

vulnerable service in the DMZ.

3 Tooling

We have developed and released a free software tool that can automatically
generate tabular charts from a textual representation. This approach is similar
to using GraphViz 2 for oriented graphs, or mscgen3 for message charts: us-
ing a narrow domain-specific language along with automated generation is the
simplest way to ensure the consistency of the graphs across a large number of
figures.

The tool is available at https://www.github.com/yrutschle/dtc.

3.1 Basic usage

The language defines three types of entities:

Systems are drawn in the background and represent the physical hardware
performing functions on the dataflow. An input line describing a system
simply contains the system name followed by a colon:

DMZ s e r v e r :

Listing 1: System line

Functions are typically processes that happen within a system and act on the
dataflow. They correspond to vertical arrows in the output diagram. An
input line describing a function is composed of: -> Function name (depth),
with depth being the number of protocol layers that are processed by the
function.

2https://www.graphviz.org/
3http://www.mcternan.me.uk/mscgen/

4

Listing 2 defines three filters that cross two, three and four protocol layers
respectively, resulting in figure 5.

DMZ:
−> F i l t e r 2 (2)
Eth / IP / TCP / HTTP
−> F i l t e r 3 (3)
Eth / IP / TCP / HTTP
−> F i l t e r 4 (4)

Listing 2: Function line

DMZ

HTTP

TCP

IP

Eth

TCP

IP

Eth

Fi
lt
er

 2

Fi
lt
er

 3

Fi
lt
er

 4

Figure 5: Functions crossing protocol layers

Note that the number of protocol layers is linked to the number of layers
in the diagram; this has nothing to do with OSI layers.

A protocol stack is present between each function and contains the stack of
protocols that these functions will use to exchange data. Each protocol
is separated by a slash. A protocol name can be left blank (e.g. if the
protocol used is irrelevant for the diagram) or named void in which case
the box won’t be drawn at all (e.g. if no protocol is used for that layer in
the current stack, but is used somewhere else. This is often the case when
transport goes through tunnels.)

Protocols are listed from bottom to top of the diagram and separated by
slashes.

Listing 3 shows the usage of void and blank protocols, with the resulting
diagram in figure 6. In this example, the physical media between the
browser and the front firewall exists but is irrelevant, so left blank. The
TLS connection terminates at stunnel, and does not exist afterwards, so
it is removed by using void.

DMZ:
−> Web s e r v e r (4)
Eth / TPC−IP / void / HTTP

5

−> s tunne l (3)
Eth / TCP−IP / TLS / HTTP
−> Front f i r e w a l l (2)

/ TCP−IP / TLS / HTTP
Laptop :
−> Browser (4)

Listing 3: Protocol stacks

DMZ Laptop

HTTP

TPC-IP

Eth

TLS

TCP-IP

Eth

TCP-IP

W
eb

 s
er

ve
r

st
un

ne
l

Fr
on

t
Ŀ
re

w
al

l

Br
ow

se
r

Figure 6: Protocol stacks

One system can contain several functions, but there must always be a pro-
tocol stack between each function, and the diagram must start and finish with
a function.

A simple example where a mail client sends a mail to a mail server is shown
in listing 4. This defines a system box named ‘Mail server DMZ’, which contains
the SMTP server and a firewall, and a ‘Sender PC’ which contains an ‘Email
client’ function. A data flow consisting of an e-mail message, delivered over
SMTP, which is carried over TCP over IP, is sent from the client to the server.
The firewall function verifies the IP and TCP levels, so it cuts through three
layers of protocols. The physical media between the e-mail client and the DMZ
is unknown or irrelevant, so it is marked as void to keep the space empty in the
protocol stack.

Mail s e r v e r DMZ:
−> SMTP s e r v e r (4)
Ethernet / IP / TCP / SMTP / RFC2822 message
−> F i r e w a l l (3)
void / IP / TCP / SMTP / RFC2822 message
Sender PC:
−> Email c l i e n t (5)

Listing 4: Simple mail flow

The diagram resulting from listing 4 is shown in figure 7.

6

Mail server DMZ Sender PC

RFC2822 message

SMTP

TCP

IP

Ethernet

TCP

IP

SM
TP

 s
er

ve
r

Fi
re

w
al

l

Em
ai

l c
lie

nt

Figure 7: Simple mail flow

3.2 Improving the chart with captions

Each protocol can also receive a caption arrow pointing left or right, which is
used to show where security filtering happens. These are presented by adding
a < or > character to the left or right of the protocol name.

Arrows can be decorated with a color that is specified with a single digit
following the arrow sign. These colors have no defined meaning, and can be
used to represent whatever is important for the task at hand. Possible use
could be:

• whether the security function is bought or home-made,

• show the supplier for sets of function, by assigning a color to each supplier
(e.g. the diagram might be used to show that two different suppliers are
used on the attack path),

• how effective the security function is, e.g. which EAL it is.

The tool currently supports five colors numbered 0 to 4: dark green, apple
green, yellow, amber, and red.

Additionally, the caption arrows are filled with references, so they can be
easily commented in the text that comes with it. If left alone, the tool will
simply increase a counter for each arrow. Alternatively, a reference, number or
letter, can be specified in the protol stack line, after the arrow color specification.
A specification such as <2,B will create a yellow, left-facing arrow, containing
the letter ‘B’.

We can then embelish our previous example to clearly document the firewall
function, as shown in listing 5 which produces the diagram in figure 8.

Mail s e r v e r DMZ:
−> SMTP s e r v e r (4)

7

Ethernet / 2> IP / 3> TCP / SMTP / RFC2822 message
−> F i r e w a l l (3)
void / <2 IP / <3,A TCP / SMTP / RFC2822 message
Sender PC:
−> Email c l i e n t (5)

Listing 5: Simple mail flow with caption arrows

Mail server DMZ Sender PC

RFC2822 message

SMTP

TCP

IP

Ethernet

TCP

IP

SM
TP

 s
er

ve
r

Fi
re

w
al

l

Em
ai

l c
lie

nt

1

2

A

3

Figure 8: The firewall prevents outgoing TCP/IP connections (1 and 2), and
checks incoming connections (3 and A)

3.3 Adding icons

A security function can also be represented by an icon on the function arrow.
This is done by adding a file name, along with the protocol levels, in brackets,
following the function definition. For example we can add a firewall icon to the
IP layer of our example, along with an envelope at the e-mail level, as shown in
listing 6 and figure 9.

Mail s e r v e r DMZ:
−> SMTP s e r v e r (4)
Ethernet / 2> IP / 3> TCP / SMTP / RFC2822 message
−> F i r e w a l l (3) [2 , dtc / f i r e w a l l . png]
void / <2 IP / <3 TCP / SMTP / RFC2822 message
Sender PC:
−> Email c l i e n t (5) [5 , dtc / enve lope . png]

Listing 6: Simple mail flow with icons

8

Mail server DMZ Sender PC

RFC2822 message

SMTP

TCP

IP

Ethernet

TCP

IP

SM
TP

 s
er

ve
r

Fi
re

w
al

l

Em
ai

l c
lie

nt

1

2

3

4

Figure 9: Chart with function icon

3.4 Generating the chart

Once the input text is written, generating the chart as SVG is as simple as:

dtc . p l input . dtc

Listing 7: Running DTC

which will generate a ‘.svg’ file. For RFC lovers, it is also possible to spec-
ify the output format as text using --format text, which results in beautiful
ASCII output as shown in figure 10.

4 Future works

As with all software project, dtc is a work in progress and several areas of
improvement are already known. In particular:

• The input parser is not very robust, and may fail upon finding incorrect
description files.

• Text that is too long will not overflow gracefully; additional flexibility, or
at the very least warnings, should be added.

• There is no test suite.

• Colors and general appearance of the diagrams are not very configurable.
Graphical elements could be marked with CSS to provide for easy external
configuration so the user can pick colors, fonts and so on.

• Unified diagrams that combine topological information and protocol in-
formation may be invented, for example based on isometric 3D.

9

• Currently the tool is quite static and requires writing descriptions specif-
ically for each diagram. Integration with architecture modeling tool may
provide ways to automatically create diagrams from a central model.

5 Conclusion

We have presented a new type of diagram to clearly represent the layering of net-
work protocols. These diagrams can be used alongside topological architecture
diagrams to provide a better overall understanding of complex systems.

10

Figure 10: Dataflow tabular chart for RFC editors11

